Science for the Next Generation

All students, all (natural) sciences

Helen Quinn
Need for new science standards

• Changing student experience

• Changing world

• Changing science knowledge

• Changing understanding of learning
Changing student experience

Children arrive in school with

• Less experience of natural world urbanization
• Less experience of mechanical world electronic devices replacing mechanical
• More experience of technology and media electronic toys and cell phones everywhere than prior generations
Changing world

• More jobs require technical and scientific capabilities

• More decisions (both personal and political) require understanding of complex scientific issues

• More data access, data-rich information need for data interpretation (in daily life).
Changing science

• Disciplinary boundaries diminishing
 (school subjects defined in late 1800’s)

• New world issues (climate change; food, energy, and water needs of growing populations; loss of biodiversity)

• Science, engineering, technology and society interconnections pervasive
Changing understandings of cognitive science and learning

- Rote learning (facts and procedures) does not readily transfer to application in new situations.

- Conceptual change vs layering “schooled knowledge” over naïve conceptions

- Building coherent knowledge systems “Deeper learning”
Two step development process

A Framework for k-12 Science Education
Produced by BOSE committee,
9 scientists, 9 education experts
Download at www.nap.edu

Next Generation Science Standards
Produced by a process led by Achieve Inc.
Involving teams from 26 states
www.nextgenscience.edu
Goals of the Framework (shifts)

Science as a coherent body of knowledge and practice

Using results from research on learning to drive more effective science teaching

What do all students need to know and be able to do?

How does this learning build across the years of school?
Framework call for Science in Three Dimensions

- **Scientific and engineering practices**
 -- doing what scientists and engineers do

- **Crosscutting concepts**
 -- making connections across sub-disciplines of science

- **Disciplinary core ideas**
 -- learning to use and apply key science ideas,
 not just to memorize facts and apply rote procedures
Le savant doit ordonner ; on fait la science avec des faits comme une maison avec des pierres ; mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison.

The knower must organize (the knowledge); one builds science with the facts (data), as (one builds) a house with the stones. But a collection of facts is no more a science than a heap of stones is a house.

Jules Henri Poincaré (29 April 1854 – 17 July 1912)
Students must build 3D science knowledge structures.

Make conceptual changes from their pre-conceptions.
To build a house

• Need building materials—stones, planks, bricks, Disciplinary core ideas

• Need methods and tools and experience using them

Science and Engineering practices

• Need some idea of what you are trying to build, some big ideas about the nature of houses

Crosscutting Concepts
A new vision of the classroom

• Less teacher talk -
 Teacher role as facilitator

 Introducing phenomena
Orchestrating student work to investigate, model and explain them
Providing science ideas via mini-lectures at key moments
Engaging students in science practices
Asking questions, rather than giving answers.
Students investigate and explain phenomena

- More student talk and activity
- Work in small groups
- Develop models of system
- Argue about what is observed, how to represent it, what caused it….
- Incorporate science ideas in models
- Use models to support detailed explanations
Dimension 1

Science and engineering practices
Scientific and Engineering Practices

1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data

5. Using mathematics and computational thinking
6. Developing explanations and designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Red= not common today
Engineering uses all, only 2 and 6 are distinct
Practices used in making sense of phenomena

• Models support explanations
• Argument from evidence to refine models and explanations
• Applying science concepts
• Data analysis turns data to evidence, uses mathematics and computational thinking
• Explanations (or failure of explanation) prompt new questions and investigations
• Need to obtain, evaluate and communicate information at every stage
Students must engage in all practices

• To understand how scientific knowledge is developed (nature of science)

• To support conceptual change by confronting their own models with phenomena

• To be able to apply science and engineering knowledge in new contexts
Explanations are not science theories

• Student must learn science ideas

• Apply them to understand phenomena or in design projects

• Phenomenon provides a context to make the learning meaningful
Knowledge in use

• More likely to be remembered

• More likely to be used in new problem situations

• More connected to other knowledge and skills
Developing and using models

• Not just learning about models scientists use, but developing your own

• To explain specific phenomena in specific systems

• Incorporate visible and invisible features

• Invisible features represent science ideas
Model building and observation

As in art, so in science, the attempt to represent drives to more careful observation of what is being represented.

Decisions must be made: what to foreground, what to leave out how to revise...
IQWST Assessment: Modeling Smell

Your teacher opened a jar that contained a substance that had an odor. Imagine you had a very powerful microscope that allowed you to see the odor up really, really close. What would you see?

- 75% of students create a particle model, 25% a mixed model
- 68% of students include odor particles that are moving in straight lines until they collide into each other; 32% include both odor and air

2. Label what the parts in your drawing (in the magnifier) represent.

*=Ammonia Molecules
□-Tissue soaked in Ammonia in a Jar
→ - Movement
O-Air Molecules

3. Now, imagine that a friend of yours from a different science class was looking at
Dimension 2

Cross-cutting concepts
Cross-cutting concepts

• Concepts (or questions) common to all disciplines, but rarely taught or emphasized

• Tools for thinking and analyzing

Scientists see science as interconnected

• Students cannot make connections unless they are supported and encouraged to do so
Crosscutting Concepts

1. Patterns

What patterns (in form, in behavior, repetition over time) do I notice that need explanation?

2. Cause and effect: mechanism and explanation

Can I explain what caused the observed events?

3. Scale, proportion and quantity

What scale, what proportional relationships and what units of measure must I consider?

4. Systems and system models

What is the relevant system, and what is my model for it?
Cross-cutting concepts (continued)

5. Energy and matter: flows, cycles and conservation

How do energy and matter flow into, out of, and within this system?

6. Structure and function

How does the shape and structure of this part relate to how it functions?

7. Stability and change

Under what conditions is this system stable?

What makes it change?
Example: energy as a cross cutting idea

How do teachers in one course build on knowledge gained in a different course?

Physicists, chemists, earth scientists and biologists all talk about energy.

Can students connect the very different usages?

Not as we teach it today!

Teachers in all disciplines need to adjust their language around energy toward a more common conception and need to discuss the disciplinary differences in usage and the reasons for them.
Dimension 3

Disciplinary core ideas
Core Ideas - Building a firm base

• A limited number of critical ideas that feed all more detailed science understandings

• What ideas are essential to understand our world?

As citizens, as consumers, eg for our own health and that of our community
Criteria: A core idea for K-12 science instruction is a scientific idea that

- Has **broad importance** across multiple science or engineering disciplines or is a **key organizing concept** of a single discipline
- Provides a **key tool** for understanding or investigating more complex ideas and solving problems
- Relates to the **interests and life experiences of students** or can be connected to **societal or personal concerns** that require scientific or technical knowledge
- Is **teachable and learnable** over multiple grades at increasing levels of depth and sophistication
Core ideas

- Physical Sciences (matter, forces and interactions, energy, waves and information)
- Life Sciences (molecules to organisms, ecosystems, heredity and variation, evolution and biodiversity)
- Earth and space sciences (earth in space, earth systems science, human interactions)

purple => not emphasized in current curriculum
More core ideas

• Engineering Technology and Applications of Science (engineering design; interactions of science, engineering technology and society)

This is new!
If not in science then where in school do students meet these ideas?

Applications make science meaningful to many students
Engineering

• 8 practices and 2 core ideas

• Designing solutions to real world problems requires students to apply (and develop) their understanding of science

• Knowing design principles helps inform effective design practice
Integrating the Dimensions

- To facilitate students’ learning the three dimensions must be built together in standards, assessments, curriculum and instruction.

- Students should explore a core idea by engaging in the practices and making connections to crosscutting concepts.
Next Generation Science Standards

• National model, not federal mandate
• Based in detail on Framework
• Developed with 26 state teams
• Standards as “performance expectations”
Barriers to change

• Political – Evolution and Climate Change (human impacts on Earth systems)

• Practical: Classroom space and time,
Teacher knowledge,
Resources for professional development
Resources for classroom investigation and design activity
Student and parent expectations
Engaging for girls (not an issue for biosciences)

- Science as useful knowledge vs knowledge for its own sake

- Design experience makes engineering an option, not a mysterious male domain

- Engaging in practices builds confidence in one’s own thinking

Some evidence suggests these approaches help
Other under-represented students

• Doing science is broadly engaging

• Supports language learning and “code switching”

• Supports and motivates reading and math learning
Why consider language learning in science?

Increasing fraction of students whose home language is not English

(in CA 43%, 22% classified as English learners i.e. not yet English competent)

Large differences by social class in language level (in home language) at school entry (factor of 10 in vocabulary)

Poor language development is a major barrier to school success

Science demands & supports language growth
Undergraduate science

• Same learning theory (and more) implies need for change

• Early research experience

• Prospective science teachers need to experience science practices in college science