Livin' Large: Lessons Learned from the Large-Lecture Lifestyle

David Quarfoot
Associate Teaching Professor
Department of Mathematics
dquarfoot@ucsd.edu

UCSD's Jeannie Auditorium: 600 seats

Up and Running

 $socrative.com \gg Login \gg Student Login \gg Room Name = QUARFOOT$

OR

App store ≫ Socrative Student

Choate Rosemary Hall 2001-2008, private boarding Class sizes: 5-15 students

University of Utah 2008-2010, public 30-60 students

Roxbury Latin School 2010-2012, private day 5-15 students

UCSD 2016-present, public 80-400 students

107

156

205

283

560

1,438

2,183 2,967

3,662

4,622

5,499

6,026

6,547

7,383

8,251 8,940

9,446

9,562

9.951

10,270 10,488

11.357

12,164

12,724

13,357

13,908

16,252

16,595 16,808 16,978

17,240

16,853

16,577 17,101

16,896

17,454

18,137

18,664

18,907

20,249

22,128

23,225

23,675

24,240

25.109

25,810

26,266

27,117

27,815

27,176

26,855

28,052

29.146

30,412

1960

1961

1963

1964

1965

1966

1967 1968

1969

1970

1971

1972 1973

1974

1975

1976

1977

1978 1979

1980

1981 1982

1983

1984

1985

1987

1989

1991

1992

1993

1994

1995

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Up and Up (and Up!)

My recent class sizes: 450, 240, 90, 250, 80, 130, 320, etc.

Winter 2023 Class Sizes (after drop deadline)

- Precalc (100, 100, 120)
- Calc 1 non-STEM (240, 240, 200, 200)
- Calc 1 STEM (260, 200, 160)
- Calc 2 non-STEM (140, 330, 200, 130, 100)
- Calc 2 STEM (160, 400, 150)
- Intro Stats (200, 130, 200)
- Linear Algebra (500, 160, 130)

Lesson 1: Use Flexible Class Policies

Let p be the probability that a random student will miss a deadline, skip a class/discussion, not take an exam, etc. for any reason.

Let $X \sim Binom(n, p)$ be the number of students in a class of n who fail to meet

To Socrative! Class Policies Brainstorm

Flexible Class Policies I Use

- Drop x of y homework assignments/attendance checks
- Classes always podcast
- Head off tech excuses (HW due at 9 PM with 2 hour tech issue window)
- Drop x of y exams with final exam replacement

Formula 1:

30% Homework (out of 95% of max points) 20% Exam 1 20% Exam 2 30% Final Exam

Formula 2:

30% Homework (out of 95% of max points) 20% Better Exam score

50% Final Exam
(This formula basically replaces the lower Exam score with the Final Exam Score.)

Lesson 2: Rare and Ultra-rare Events Occur Many Times

$$\text{Let } \lambda = \frac{1 \text{ rare event}}{100 \text{ student-day}} \cdot \frac{300 \text{ students} \cdot 70 \text{ days}}{1 \text{ class-quarter}} = 210 \frac{\text{rare events}}{\text{class-quarter}}$$

$$X \sim Pois(\lambda = 210)$$

- Forget calculator at exam
- Car breakdown
- Submitted wrong homework

Let
$$\lambda = \frac{1 \text{ ultra-rare event}}{1000 \text{ student-day}} \cdot \frac{300 \text{ students} \cdot 70 \text{ days}}{1 \text{ class-quarter}} = 21 \frac{\text{ultra-rare events}}{\text{class-quarter}}$$

Athlete concussion, car drove into apartment, suicide email, death in family, car accident, scooter accident, drug abuse, housing loss, 3x class repeat, etc.

Lesson 3: Little Hope of a Shared Knowledge Base

Let p be the probability a random student is familiar with a problem's context.

Your Turn: Given a class of size n, what is the probability all students will be familiar with the context?

Let S_i be the event that student i knows the context.

$$P(S_1 \text{ and } S_2 \text{ and } \dots \text{ and } S_n) \stackrel{\text{ind.}}{=} P(S_1) \cdot P(S_2) \cdots P(S_n) = p^n$$

Example:
$$(0.9)^{15} \approx 0.206$$

$$(0.9)^{50} \approx 0.005$$

$$(0.9)^{200} \approx 7 \cdot 10^{-10} \approx 0$$

My failed settings: (American) deck of cards, baseball, prime numbers, term "divisible", north/south/etc.

Probability of a Shared Knowledge Base (Class Sizes: 15, 50, 200)

Probability all students will be familiar with a given context (assuming independence)

Probability a **single** student is familiar with a given context

Lesson 4: You Must Consider the Larger Physical Space

More apparent

- Voice amplification, restating
- Write larger
- Use thicker chalk, thicker graphics
- Laser pointers/bluetooth distances
- Color distinctions wash with distance
- Energy/lesson sparkle must scale

Vibrato in larger spaces study

Less apparent

Videos <u>here</u>, Manim code <u>here</u> (videos not viewable in PDF file)

Lesson 5: Students Have Space and Interaction-Ratio Expectations

"... there is more to space besides navigation and assessment: people have different emotional experiences at different places, which create emotionally tinged representations of space." Paper

Contrast: Haunted house vs. house you grew up in vs. White House

Interaction Ratios

To Socrative! IR Example Brainstorm

teacher

movie

1:1

 $\sim 1:20$

 $\sim 1:200$

tutor tutee

small class teacher :

: large class

partner spouse coach sports team department chair

theater-goers

pet therapist patient

owner

Bachelorette

suitors

plane passengers performer audience

Large-Lecture Affordances

- 1. Quality student-generated data sets!
 - Real-time analysis To Socrative! Data Generation!
 - Distributions are better realized

- Narrow confidence intervals, high-powered hypothesis tests
- Less common misconceptions appear

2. The class size (m) can imitate ideas $\to \infty$

Histogram of \overline{x} values (i.e., sampling distribution)

limits, Riemann sum approximations, improper integrals, Central Limit Thm.

3. Greater reach (breadth vs. depth trade-off)

Small school: 50 students/year \cdot 30 years = 1500 students/career

Large school: 1000 students/year \cdot 30 years = 30000 students/career

4. High probability at least 1 person knows a specialty area

Let p be the probability a random student knows about a topic.

$$P(\text{at least 1 knows}) = 1 - P(\text{no one knows})$$

$$= 1 - P(S_1 \text{ doesn't know and } \cdots \text{ and } S_n \text{ doesn't know})$$

$$\stackrel{\text{ind.}}{=} 1 - (1 - p) \cdots (1 - p) = 1 - (1 - p)^n.$$

For
$$p = \frac{1}{50}$$
, $P(\text{at least 1 knows}) \approx \begin{cases} 0.26, & n = 15\\ 0.64, & n = 50\\ 0.98, & n = 200 \end{cases}$

Exotic settings where at least one student knew: Xenoblade Chronicles 2 item farming, age cutoffs in the Canadian ed system, pronoun avoidance for transgender students, two-sport pro athletes, engine size (liters) and MPG ratings for cars

Thanks and Questions

Lessons:

- 1. Use flexible class policies
- 2. Rare and ultra-rare events occur many times
- 3. Little hope of a shared knowledge base
- 4. You must consider the larger physical space
- 5. Students have space and interaction-ratio expectations

Affordances:

- 1. Quality student-generated data sets
- 2. The class size can imitate ideas $\rightarrow \infty$
- 3. Greater reach
- 4. High probability at least 1 person knows a specialty area